33 research outputs found

    Generation of a Land Cover Atlas of environmental critic zones using unconventional tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Specific alpine environment land cover classification methodology: Google Earth Engine processing for Sentinel-2 data

    Get PDF
    Land Cover (LC) plays a key role in many disciplines and its classification from optical imagery is one of the prevalent applications of remote sensing. Besides years of researches and innovation on LC, the classification of some areas of the World is still challenging due to environmental and climatic constraints, such as the one of the mountainous chains. In this contribution, we propose a specific methodology for the classification of the Land Cover in mountainous areas using Sentinel 2, 1C-level imagery. The classification considers some specific high-altitude mountainous classes: clustered bare soils that are particularly prone to erosion, glaciers, and solid-rocky areas. It consists of a pixel-based multi-epochs classification using random forest algorithm performed in Google Earth Engine (GEE). The study area is located in the western Alps between Italy and France and the analyzed dataset refers to 2017–2019 imagery captured in the summertime only. The dataset was pre-processed, enriched of derivative features (radiometric, histogram-based and textural). A workflow for the reduction of the computational effort for the classification, which includes correlation and importance analysis of input features, was developed. Each image of the dataset was separately classified using random forest classification algorithm and then aggregated each other by the most frequent pixel value. The results show the high impact of textural features in the separation of the mountainous-specific classes the overall accuracy of the final classification achieves 0.945

    Land Cover Classification from Very High-Resolution UAS Data for Flood Risk Mapping

    Get PDF
    Monitoring the world’s areas that are more vulnerable to natural hazards has become crucial worldwide. In order to reduce disaster risk, effective tools and relevant land cover (LC) data are needed. This work aimed to generate a high-resolution LC map of flood-prone rural villages in southwest Niger using multispectral drone imagery. The LC was focused on highly thematically detailed classes. Two photogrammetric flights of fixed-wing unmanned aerial systems (UAS) using RGB and NIR optical sensors were realized. The LC input dataset was generated using structure from motion (SfM) standard workflow, resulting in two orthomosaics and a digital surface model (DSM). The LC system is composed of nine classes, which are relevant for estimating flood-induced potential damages, such as houses and production areas. The LC was generated through object-oriented supervised classification using a random forest (RF) classifier. Textural and elevation features were computed to overcome the mapping difficulties due to the high spectral homogeneity of cover types. The training-test dataset was manually defined. The segmentation resulted in an F1_score of 0.70 and a median Jaccard index of 0.88. The RF model performed with an overall accuracy of 0.94, with the grasslands and the rocky clustered areas classes the least performant

    Preliminary test on structural elements health monitoring with a LiDAR-based approach

    Get PDF
    The safety and usability of infrastructures such as bridges, roads, and buildings must be monitored throughout their useful life. Traditional inspection methods are time-consuming and expensive, and innovative solutions using LiDAR-based techniques have developed. This study presents a semi-automatic method for detecting deteriorations on structural elements of a bridge using an integrated dataset of point clouds and radiometric information. The method involves using a Terrestrial Laser Scanner (TLS) to obtain high-resolution georeferenced point clouds of the bridge beams, which are then filtered to identify four classes of deteriorations. Six Machine Learning Classifiers are tested and compared using Overall Accuracy and F1-score metrics. The Random Forest emerged as the best-performing. It was then optimised by reducing the input features through an importance analysis and the accuracies measured. The results show promise and can be explored further on a larger dataset. The study aims to generalise the methodology to transfer it to actual cases

    A fully automatic forest parameters extraction at single-tree level: a comparison of MLS and TLS applications

    Get PDF
    Forests are vital for ecological, economic, and social reasons, and adopting sustainable forest management practices is necessary. While traditional forest monitoring techniques provide detailed data, they are time-consuming; conversely, geomatic techniques can provide more detailed data for forest resource management. This study aims to assess the suitability of Mobile Mapping Systems (MMS) with simultaneous localisation and mapping (SLAM) technology for precision forestry purposes in challenging environments. We compared the performance of MMS data with Terrestrial Laser Scanning (TLS) data and evaluated the Forest Structural Complexity Tool (FSCT), which was developed for TLS datasets, on MMS data. The case study area is a highly sloped coniferous forest in the Italian Alps affected by a severe fire in 2017. Data were processed using a fully automated open-source Python tool that detects each tree's position, Diameter at Breast Height (DBH), and height. The validation procedure was conducted with respect to the TLS point cloud manually segmented. The results show that using MMS with SLAM technology is suitable for precision forestry purposes in challenging environments and that FSCT performs well on MMS data

    LiDAR and SfM-MVS Integrated Approach to Build a Highly Detailed 3D Virtual Model of Urban Areas

    Get PDF
    The three-dimensional reconstruction of buildings, road infrastructures, service networks, and cultural heritage in urban environments is relevant for many market segments and numerous functions in the management and coordination of public authorities. These stakeholders are showing increasing interest in modern acquisition and reconstruction technologies for digital models typical of the geomatic and computer vision disciplines. In this context, it is essential to methodically exploit the potential of active and passive instruments and apply multi-sensor integration techniques, to obtain metrically accurate and high-resolution products. This study proposes a multi-sensor and multi-scale approach for high-resolution 3D model reconstruction focused on a city portion of Turin (Italy). We performed an integrated survey based on LiDAR and photogrammetric techniques, both aerial and terrestrial. Then we produced a set of 3D digital products for (i) promoting the historical and artistic heritage through Virtual Reality (VR) applications, (ii) supporting the restoration of Baroque buildings, and (iii) providing advanced analysis concerning the alteration of the urban road system. The final output describes in detail the architectural elements investigated (e.g., 9,480,000 tringles to define the mesh of a statue). It emphasizes the need for deepening sensor integration and data fusion

    Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data

    Get PDF
    Riparian habitats provide a series of ecological services vital for the balance of the environment, and are niches and resources for a wide variety of species. Monitoring riparian environments at the intra-habitat level is crucial for assessing and preserving their conservation status, although it is challenging due to their landscape complexity. Unmanned aerial vehicles (UAV) and multi-spectral optical sensors can be used for very high resolution (VHR) monitoring in terms of spectral, spatial, and temporal resolutions. In this contribution, the vegetation species of the riparian habitat (91E0*, 3240 of Natura 2000 network) of North-West Italy were mapped at individual tree (ITD) level using machine learning and a multi-temporal phenology-based approach. Three UAV flights were conducted at the phenological-relevant time of the year (epochs). The data were analyzed using a structure from motion (SfM) approach. The resulting orthomosaics were segmented and classified using a random forest (RF) algorithm. The training dataset was composed of field-collected data, and was oversampled to reduce the effects of unbalancing and size. Three-hundred features were computed considering spectral, textural, and geometric information. Finally, the RF model was cross-validated (leave-one-out). This model was applied to eight scenarios that differed in temporal resolution to assess the role of multi-temporality over the UAV’s VHR optical data. Results showed better performances in multi-epoch phenology-based classification than single-epochs ones, with 0.71 overall accuracy compared to 0.61. Some classes, such as Pinus sylvestris and Betula pendula, are remarkably influenced by the phenology-based multi-temporality: the F1-score increased by 0.3 points by considering three epochs instead of two

    Detection of Wet Riparian Areas using Very High Resolution Multispectral UAS Imagery Based on a Feature-based Machine Learning Algorithm

    Get PDF
    Unmanned Aerial System (UAS) imagery has enabled very high-resolution multispectral image acquisition. Detection of wet areas and classification of land cover based on these images using the Machine Learning (ML) algorithm named Random Forest (RF) is our main purpose in this paper. Very high-resolution UAS images have been used as inputs for a machine learner to access the capability of different spectral bands and spectral vegetation indices, elevation, and texture features in the classification of land cover and detection of the wet riparian area in the case study in two different epochs. There are many existing methods for the classification of land cover based on UAS images, but very high-resolution centimeter-level data are of main importance in this analysis. Outstanding results have been produced in both epochs considering three extremely accurate performance analysers. Additionally, in this research, the most decisive and effective features have been discovered to compromise accuracy and the number of effectual features

    Precision Agriculture Workflow, from Data Collection to Data Management Using FOSS Tools: An Application in Northern Italy Vineyard

    Get PDF
    In the past decades, technology-based agriculture, also known as Precision Agriculture (PA) or smart farming, has grown, developing new technologies and innovative tools to manage data for the whole agricultural processes. In this framework, geographic information, and spatial data and tools such as UAVs (Unmanned Aerial Vehicles) and multispectral optical sensors play a crucial role in the geomatics as support techniques. PA needs software to store and process spatial data and the Free and Open Software System (FOSS) community kept pace with PA’s needs: several FOSS software tools have been developed for data gathering, analysis, and restitution. The adoption of FOSS solutions, WebGIS platforms, open databases, and spatial data infrastructure to process and store spatial and nonspatial acquired data helps to share information among different actors with user-friendly solutions. Nevertheless, a comprehensive open-source platform that, besides processing UAV data, allows directly storing, visualising, sharing, and querying the final results and the related information does not exist. Indeed, today, the PA’s data elaboration and management with a FOSS approach still require several different software tools. Moreover, although some commercial solutions presented platforms to support management in PA activities, none of these present a complete workflow including data from acquisition phase to processed and stored information. In this scenario, the paper aims to provide UAV and PA users with a FOSS-replicable methodology that can fit farming activities’ operational and management needs. Therefore, this work focuses on developing a totally FOSS workflow to visualise, process, analyse, and manage PA data. In detail, a multidisciplinary approach is adopted for creating an operative web-sharing tool able to manage Very High Resolution (VHR) agricultural multispectral-derived information gathered by UAV systems. A vineyard in Northern Italy is used as an example to show the workflow of data generation and the data structure of the web tool. A UAV survey was carried out using a six-band multispectral camera and the data were elaborated through the Structure from Motion (SfM) technique, resulting in 3 cm resolution orthophoto. A supervised classifier identified the phenological stage of under-row weeds and the rows with a 95% overall accuracy. Then, a set of GIS-developed algorithms allowed Individual Tree Detection (ITD) and spectral indices for monitoring the plant-based phytosanitary conditions. A spatial data structure was implemented to gather the data at canopy scale. The last step of the workflow concerned publishing data in an interactive 3D webGIS, allowing users to update the spatial database. The webGIS can be operated from web browsers and desktop GIS. The final result is a shared open platform obtained with nonproprietary software that can store data of different sources and scales
    corecore